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ABSTRACT 
We describe a new mathematical approach for deriving and solving covolume models of the 
three-dimensional, incompressible Navier-Stokes flow equations. The approach integrates three technical 
components into a single modelling algorothm: automatic grid generation; covolume equation generation; 
dual variable reduction. 
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INTRODUCTION 

In recent years covolume methods based on a dual pair of mutually orthogonal companion 
grids have gained the attention of the CFD community and have been used for the numerical 
modelling of fluid flows5,6,13-15,17-19,23,26. The basic idea behind the derivation of these schemes 
is to exploit the divergence/curl form of the underlying conservative laws by integrating them 
over the covolumes and, using the divergence theorem and Stokes' theorem, converting volume 
integrals into surface and line integrals on the boundaries of the volumes, whereupon these 
integrals are then discretized. 

In this paper we extend from two to three-dimensions a covolume approach proposed5,6,12-14 

for modelling the flow of a viscous incompressible fluid in an open bounded domain. The 
approach combines three components: 

(1) Unstructured grid generation: an algorithm presented at MAFELAP3,4 is used to discretize 
the flow domain into a tetrahedral Delaunay tessellation and companion Voronoi 
polyhedral decomposition. 

(2) Covolume equation generation: the continuity equation is discretized by integrating it over 
each tetrahedron. The divergence theorem and Stokes' theorem are used to derive finite 
volume analogues of a scalar form of the momentum equations in terms of the primitive 
variables of normal velocity components and pressure (assigned to the edges and corners, 
respectively, of Voronoi polyhedra). 
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(3) Dual variable reduction: a network theoretical technique is used to transform the covolume 
system of equations into an equivalent system (called the dual variable system) which is 
a factor of three smaller than the original primitive covolume system. 

The paper is organized as follows. First, we briefly review our approach (the so-called Watson 
algorithm25 for constructing tessellations of mutually orthogonal Delaunay tetrahedra and 
Voronoi polytopes. We then present the particular form of the 3D incompressible Navier-Stokes 
equations that will be used in the following section to generate continuous time, discrete space 
covolume difference equations for the continuum flow problem. We next present a method for 
the reconstruction of a velocity vector field from the (scalar) velocity components determined 
by the covolume method. 

We then outline an approach whereby the covolume system of equations involving primitive 
flow variables is transformed into an equivalent system which is one-third the size of the original 
primitive system. In the next section we establish an equivalence between the covolume method 
and the MAC scheme for hexahedral uniform meshes for the simple case of Stokes flow. 
Conclusions are given in the final section. 

UNSTRUCTURED GRID GENERATION 

At MAFELAP V (1984) an algorithm was described for the computer generation of Delaunay 
tetrahedral finite element meshes for bounded three-dimensional domains3,4. The approach to 
solid mesh generation, called Watson's algorithm25, turns upon the simple observation that four 
points in space will determine a Delaunay tetrahedron if and only if the circumsphere passing 
through these points contains no other points in its interior. In effect, Watson's approach is to 
reject (from the set of all possible tetrahedra that might be formed in a tessellation of a given 
set of points) those tetrahedra with non-empty associated circumspheres. 

Closely associated with the Delaunay mesh of tetrahedra is a dual construct called the Voronoi 
tessellation. Each point, p, in the tetrahedral mesh is surrounded by a union of disjoint tetrahedra, 
say Tp. Appropriate straight-line connections of the circumcentres of these tetrahedra3,4,8 

produces the edges of a convex polytope, Vp, containing p in its interior. The Voronoi polytope, 
Vp, has the property that any point in its interior is closer to p than it is to any other point in 
the mesh. Consequently, the faces of Vp are composed of bounded planes that bisect tetrahedral 
edges connecting p to its neighbouring points in the mesh. On the other hand, an edge on the 
surface of Vp is perpendicular to a triangle face contained in Tp and that edge passes through 
the circumcentre of that triangle face. As a result of all this, Vp and Tp share a mutual orthogonality 
which we summarize as follows: 

(1) faces of Vp are perpendicular bisectors of edges of tetrahedra in Tp; 
(2) edges of Vp are perpendicular to triangle faces in Tp and pass through tetrahedral and 

(triangle) facial circumcentres in Tp; 
(3) Corners on the surface of Vp are circumcentres of tetrahedra in Tp. 
Visualization and manipulation of three-dimensional tetrahedral meshes and Voronoi 

polytopes is difficult at best (it is undoubtedly one of the principal reasons many users avoid 
the tetrahedral element in mesh construction). To help with this, and to lay the foundation for 
covolume equation generation later, we consider some simple illustrations. These illustrations 
consider a single point p1, a single set of surrounding tetrahedra, TP1, and a simple associated 
Voronoi polytope, Vp1, all extracted from a Delaunay tetrahedral mesh of a large set of points 
containing p1. Figure la displays the triangular faceted surface of TP1 containing 30 tetrahedra, 
each possessing p1 as a vertex. Looking inside TP1, we extract the Voronoi polytope Vp1 shown 
in Figure lb. Note that in general, the corners on ∂Vp1 are shared by three faces on ∂VP1. This 
means that such a vertex is also a vertex on three abutting Voronoi polytopes, VP2, VP3, VP4. 
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Connecting p1, p2, p3, p4 forms one of the Delaunay tetrahedra in TPi (see Figure 1c). Figure 
1d illustrates TP1 (wire frame mode) and VP1 (shaded mode) simultaneously. From Figures 1c 
and 1d, the mutual orthogonality of TP1 and Vp1 is evident. For example, edge is perpendicular 
to and is bisected by face ABCDE of the polytope VP1. Also, edge of VP1 is perpendicular 
to and passes through the circumcentre of face 

We conclude with several comments that will be important in what follows. First, the covolume 
discretizations described later make it desirable that a Delaunay tetrahedron contain its 
circumcentre and that the circumcentre of anyone of its four triangular faces lie within that face. 
Although this situation cannot be guaranteed for a Delaunay tessellation of a random set of 
points, it is closely approximated when the variation of point spacing is reasonably smooth 
throughout the domain. 

Second, degeneracies can occur in 3D Delaunay tessellations in one of two ways. When more 
than 4 points lie on a sphere, the Watson algorithm has to be adjusted so that correct and 
consistent decisions are made regarding formation of Delaunay tetrahedra. This can be 
accomplished by perturbing the coordinates of points when ambiguity occurs3,4. This in turn 
can produce Voronoi polyhedra which have faces of zero area or edges that have zero length. 
This situation apparently does not adversely affect the covolume discretizations as will be shown 
later. 
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Perturbing points can also produce what are termed slivers3,4: collapsed tetrahedra with 
arbitrarily small (and in extreme cases even zero) volume, but well proportioned triangular faces. 
Such a tetrahedral element would spell computational trouble if used in finite element analysis. 
For the covolume method presented here, this type of degeneracy presents no apparent problem, 
as we show later. 

A pair of Delaunay and Voronoi tessellations of Ω is called ideal if: 
(i) there are no tetrahedra of zero volume, 
(ii) every face of a Voronoi polytope has positive area and each edge of the face has positive 

length, 
(iii) every tetrahedral circumcentre is contained within the interior of the associated 

tetrahedron, and 
(iv) every circumcentre of a tetrahedral face is contained within the interior of the associated 

triangular face. 
Unfortunately, it is virtually impossible to guarantee an ideal pair of tessellations with 

contemporary solid mesh generation technology. In fact, it is worth noting that even in two 
dimensions, we know of no automatic mesh generator that guarantees acute triangulations, a 
necessary condition that circumcentres are contained in associated triangles. Thus any serious 
effort to implement a covolume method in three dimensions must confront and resolve the 
problems that arise when the tessellation fails to be ideal. One of our objectives in this paper 
is to address these issues. 

In Figure 2 we show a Delaunay tetrahedral mesh of a flow duct containing 1000 tetrahedra. 
Figure 3 illustrates a rendering of the dual Voronoi tessellation containing 500 polytopes 
(polytopes interior to the flow region only). 

THE INCOMPRESSIBLE FLOW PROBLEM 
We consider a bounded flow domain Ω in R3 with boundary ∂Ω. The continuum problem20 is 
to find a velocity q = (u(x, y, z, t), v(x, y, z, t), w(x, y, z, t))T and a scalar pressure field p(x, y, z, t) 
which satisfy the continuity, or conservation of mass, equation: 

and the vector-valued conservation of momentum equation 
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where x = (x, y, z), v is the kinematic viscosity of the fluid and F(x, t) is a prescribed source 
term. We assume boundary conditions of the form: 

and 

where ∂Ω = ∂Ω1 ∂Ω2 and ∂Ω1 ∂Ω2 = Φ. Further, we assume initial conditions of the form: 

Following earlier development13-15, we make use of (1) to first represent the convective and 
viscous terms in (2) as, respectively, 

and 

For a constant unit vector n it can be verified that: 

where ∂/∂q denotes the directional derivative in the direction q and ||q|| is its Euclidean length. 
Substituting (6) and (7) into (2) and taking the inner product with the unit vector n (and using 
(8)), we obtain a scalar version of the momentum equation: 

It is (1) and (9) to which we apply the covolume technique in the following section. 

COVOLUME DISCRETIZATION OF THE FLOW PROBLEM 

In the two-dimensional covolume method the continuity equation is integrated over each triangle 
in a mesh of triangles, the divergence theorem is applied, and the normal velocity component 
n∙q is approximated by mid-edge normal velocity components13-15,17-19. In the three-
dimensional setting, we integrate (1) over each tetrahedral control volume, (see Figure 5), 
apply the divergence theorem and approximate the normal velocity component n∙q by velocity 
components normal to the faces of the tetrahedra and passing through facial circumcentres. 
(Recall that the edges of Voronoi polytopes are normal to the tetrahedral faces and pass through 
the circumcentres of these faces.) The result is: 

where n is the outward normal vector to nj is a pre-assigned unit normal to the ith face of 
∂ j, Ai is the area of the ith face of j, ui(t) = q∙ni|pi and Pi is the circumcentre of the ith face 
of j. Note that (n∙ni) = ±1 . As pointed out earlier, this circumcentre Pi, may be outside of 
the ith face of j. When this occurs, we also assume that ui(t) is an approximation to the flow 
normal to the ith face. If there are NT tetrahedra in the tessellation of Ω, then there are NT such 
discrete continuity equations which we write as: 
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where u(t) is an NF-vector of normal velocity components with ith entry ui(t), and NF is the 
number of triangular faces in the tetrahedral mesh for which the normal velocity is unknown. 
The diagonal matrix D1 has its ith entry equal to Ai. The vector b contains known boundary 
data (that is, velocities specified in (4)). The NT × NF matrix AD1 is called the discrete divergence 
operator associated with the tetrahedral Delaunay tessalation. We note also that the entries of 
the matrix A are ±1 or 0. This fact will be used later. 

A problem which arises in three-dimensional mesh generation is the possible creation of 
slivers3,4. In Figure 4a we illustrate a Delaunay tetrahedron together with its associated 
circumsphere. If the node point D in Figure 4a is moved to any other position on the circumsphere, 
then the tetrahedron ABCD remains a valid Delaunay tetrahedron. As a worst case, suppose 
D were moved to point D′ shown in Figure 4b, where D′ is slightly out of the plane defined by 
nodes A, B and C. ABCD′ then defines a badly distorted Delaunay tetrahedron whose faces are 
well-proportioned triangles, but whose volume can be made arbitrarily small. We refer to these 
thin tetrahedra as slivers. Although hard to avoid, most slivers can be removed by techniques 
described in References 3, 4. We impose the discrete continuity equation (10) for all tetrahedra; 
even in the extreme case when the volume of j is zero. This is reasonable even for the latter 
case since (10) then simply states that the flow is continuous across the planar region composed of 
the faces of j . 

The momentum equation (in scalar form defined by (9)) is approximated at the circumcentre 
of each face of the NF faces of the tetrahedral mesh bearing an unknown normal velocity 
component as follows: with reference to Figure 5 and starting with facial circumcentre node P1 
in Figure 5, we take n = n1 in (9) where ni is the unit vector through P1 normal to the triangular 
face denoted ABC. Then, we define the following discretizations: 

I. Temporal term: 

II. Pressure term: 

where p1 approximates pressure at the circumcentre, Q1 of tetrahedron ABCD and p2 
approximates pressure at circumcentre Q2 of tetrahedron ABCE (see Figure 5). 
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III. Viscous term: curl(curl q)∙n 
If AABC is the area of triangular face ABC, then 

Let T be a unit tangent vector to ∂(ABC) oriented in the counterclockwise direction with 
respect to n1. 

Then, by Stokes' theorem: 

where TAB, TBC and TCA are the three unit tangent vectors to the sides of triangle face ABC (see 
Figure 6). Because of the mutual orthogonality of Delaunay tetrahedral and Voronoi polyhedral 
tessellations, these tangent vectors are normal vectors to the faces (hyperplanes bisecting edges 
AB, BC and CA) of three abutting Voronoi polyhedra. Also, 

where hBC is the length of edge BC. 
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Next, if FBC is the Voronoi polyhedral face corresponding to the plane bisecting BC, then*: 

Because TBC is normal to FBC, a second application of Stokes' theorem to (17) yields: 

where q∙n is the component of flow tangential to the edges of FBC, and therefore, normal to 
certain triangle faces of the tetrahedral mesh. Finally, we have: 

where are the lengths of the k ( = 6 in Figure 6) edges bounding the polyhedral face FBC. Note 
that in the pressure discretization (13), ||Q2 — Q1|| is also the length of an edge of a Voronoi 
polyhedron. If an edge of a Voronoi polytope has zero length (some = 0), then this edge 
contributes nothing to the boundary integral in (19) and our approximation in (19) is consistent 
since the corresponding summand is zero. With reference to (13), for such an edge, Q2 = Q1, 
and ∂p1/∂n1 is set to zero; the pressures p2(t) and p1(t) are equal since Q2 = Q1. Implementation 
would not, however, require special treatment since the discrete momentum equation is ultimately 
scaled by ||Q2 - Q1|| (see (27)). Combining (18) and (19) with (16) produces: 

Similarly, ∫CA curl q∙TCA ds and ∫AB curl q∙TAB ds can be approximated by linear combinations 
of normal velocity components, ui(t), assigned to the edges of polyhedral faces that are 
hyperplanes bisecting CA and AB respectively. Finally, (14) indicates that curl(curl q)∙n1 can be 
approximated by a sum of tangential flows along polyhedral edges (hence, components of flow, 
ui(t), normal to triangle faces of tetrahedral covolumes) corresponding to hyperplanes bisecting 
AB, BC, and CA. 

IV. Convective term: ||q|| 

We construct an upwind approximation to the convective term by extending the approach, 
in Reference 15, to three dimensions. This is a two step process. 

Step 1: Determine an approximation to the velocity at the vertices of each tetrahedron. Let pi 
be a vertex of tetrahedron j and VPi be the Voronoi polytope associated with pi. Further, let 
Tpi be the set of all tetrahedra that share vertex pi and Spi be the set of circumcentres of those 
faces of the tetrahedra in the set TPi that have pi as a vertex. The point p i is in the convex hull 
of Spi. Note that the facial circumcentre Pk may be outside of the kth face; however, the velocity 
uk(t) is associated with Pk. 

The velocity vector q at vertex pi can be approximated (in several ways) as a linear combination 
of the velocities at the facial circumcentres in SPi; assuming the latter are known (see next 
section). For example, choose four points Pk in SPi, k = 1, 2, 3, 4, such that the tetrahedron with 
vertices contains pi (see Figure 7). Note that tetrahedron is not a tetrahedron 

*As pointed out earlier, we cannot guarantee the area of face FBC is positive. In fact, face FBC could degenerate to a 
line or even a point. For such cases the approximation in (17) is invalid. See later for an example of how the need for 
this approximation can be circumvented. 
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of the original Delaunay tessellation. The velocity q(pi) is approximated by: 

where are the barycentric coordinates of the point pi in the tetrahedron Note 
that the choice of the Pk and the determination of the coordinates βik need only be done once 
in a preprocessor stage. 

Step 2: Upwind differencing of convection term. Let P1 be a facial circumcentre where the 
convection term is to be discretized and q(P1) be the velocity vector at P1 (from the previous 
time step). Assume n1 is an outward normal to the triangular face ABC with circumcentre P1. 
The upwind strategy then involves testing whether q(P1)∙n1 ≥ 0; i.e. the flow across the face is 
out of tetrahedron j in Figure 8. (If q(P1)∙n1 < 0 then consider the other abutting tetrahedron 
sharing face ABC.) 

Let Q be the point of intersection of the vector - q ( P 1 ) with a face (say ABD) of j. Then: 

The velocity q(Q) is determined by linear interpolation of the velocity at the vertices A, B, D, 
the latter having been determined in Step 1. 

If the facial circumcentre P1 is not on the face then replace P1 in the above discussion 
by the centroid of that face. In such a case, as earlier, we assume q(P1)∙n1 is a good approximation 
to the flow across face ABC in the direction n1. 

Combining (12)-(15), (20) and (22), we obtain a semi-discrete momentum equation of the form: 

where Q(u) is an NF × NF matrix containing couplings associated with the discretization of the 
viscous and convective terms, the latter depending on u. The NF × NF diagonal matrix D2 has 
as its ith entry, the distance between the two circumcentres of the two tetrahedra sharing the 
ith triangular face in the mesh; see (13). The vector p of pressures is NT × 1 and the matrix AT 

is the transpose of the NT × NF matrix in (11); a fact that we exploit in a later section. 
Equations (11) and (23) form a differential algebraic equation (DAE) system of (NT + NF) 

equations in (NT + NF) unknowns; the NT pressures and the NF velocity components. This 
system could be solved using any one of a variety of DAE solvers to obtain a numerical solution 
of the fluid dynamics system (1) and (9). Note that the solution provides only approximations 
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to the normal component of the velocity vector q at the circumcentres of tetrahedral faces. In 
the next section we discuss the recovery of approximations to the velocity vector at these same 
NF points in the flow region. 

RECONSTRUCTION OF VELOCITY FIELD 
Inherent in the covolume method is the need to reconstruct the (vector) velocity field q given 
components of q at various points in the flow region5,6,13,14,17-19. In References 19 and 13, 
schemes were presented for triangular meshes (2D problems) that reproduce constant flow fields 
exactly. These may not be of sufficient accuracy for use in discretizations like the upwind scheme 
presented earlier. A reconstruction procedure for triangulations was presented15 that reproduces 
linear flow fields exactly. We now extend this procedure to three-dimensional tetrahedral meshes. 

We introduce a local coordinate system on each of the tetrahedral faces. The system is centered 
at the circumcentre Pi of the ith face and ni is the pre-assigned unit normal to the ith face. The 
remaining coordinate directions si and ti are chosen in the plane of the ith face so that si, ti and 
ni form a (non-orthogonal) right handed system. For example, a convenient choice for si and 
ti are unit vectors in the directions and in Figure 9. 

Given a tetrahedron Ω1, let Ωj, j = 2, 3, 4, 5 be the four tetrahedra sharing a face with Ω1 (see 
Figure 10). Let be the 16 facial circumcentres of these four neighbouring tetrahedra. At 
Pj the velocity q is approximated by: 

where uj is known and we seek values for vj and wj, j = 1 , . . . , 16. These 32 components are 
chosen so as to reproduce an arbitrary linear flow field (in 5

j=1 Ωj) of the form: 

where the four 3-vectors ai(t) are fixed but arbitrary. Thus, there are a total of 44 unknowns. 
Equating (24) and (25) at each of the 16 circumcentres yields 48 scalar equations in 44 unknowns. 
We have yet to investigate the rank of this system, but our experience in the two-dimensional 
case suggests it is of full rank. As such a least squares procedure can be used for its solution. 
Also, as in 2D, we anticipate that the solution of this system can be obtained by solving a much 
smaller reduced least squares problem. (See Reference 15 for details of this procedure in the 2D 
case.) 

DUAL VARIABLE METHOD 
We present a variable reduction technique which replaces the NF + NT system (11), (23) by an 
equivalent system of dimension NF - NT. This network method (the dual variable method) was 
presented1,11,12,21,22 for rectangular grids and5,6,13-15,23 for triangular grids. 

In network terminology2 the edges (links) and vertices (nodes) of the Voronoi polytopes form 
a directed network Γ, while those of the Delaunay tessellation constitute its dual Γ*. Each link 
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of Γ carries a flow that is an approximation of the velocity component normal to a face of a 
tetrahedron, and each node of Γ carries a state that is an approximation of the pressure at the 
circumcentre of a tetrahedron. The matrix A in (11) is the incidence matrix of the network Γ, 
equations (11) are its node laws and equations (23) constitute the link characteristics. 

The dual variables are states on the nodes of Γ*, i.e. the vertices of the tetrahedra. If the flow 
region is simply connected, then the boundaries of the faces of the Voronoi polytopes are 
elementary cycles in Γ. An elementary cycle is a closed path of links in the network such that 
in a complete traverse of the cycle a node is encountered exactly once. In two dimensions an 
edge of a Voronoi polygon is shared by at most two polygons, and the boundaries of the Voronoi 
polygons form a basis of elementary cycles. However, in three dimensions, an edge of a Voronoi 
polytope may be common to 3 or more polytopes. Hence, the set of all elementary cycles that 
are boundaries of faces of polytopes yield a dependent set. For example, in Figure 11, the 
elementary cycles corresponding to facial boundaries for a simple Voronoi polytope are indicated. 
Note that the elementary cycle on face Fp1p2 is just the negative of the sum of the other elementary 
cycles associated with faces of this polytope. 

The dimension of the ker A or the number of elementary cycles in a basis for ker A is NF - NT. 
The ker A is the kernel or null space of A: the set of linearly independent vectors 
{C1, C 2 , . . . , CNF-NT} which satisfy ACi = 0. In theory, (Reference 2, Theorem 7, p. 131) it is 
straightforward to construct an NF × (NF - NT) fundamental matrix C whose columns 

are cycle vectors for elementary cycles of Γ and form a basis for ker A. 
Given the fundamental matrix C such that AC = 0 we proceed to reduce the size of the 

primitive system as follows. If we let D1u0 be any particular solution of the discrete continuity 
equation (11), then (D1u — D1U0) ker A. Such a particular solution can be obtained using the 
notion of a spanning tree2 for Γ, Reference 2. Hence D1u - D1u0 = Cγ for some vector of dual 
variables γ = (γ1, γ 2 , . . . , γNF-NT)T, and 

Equation (26) expresses the NF unknown normal components of velocity in terms of the 
(NF - NT) dual variables. If we substitute (26) into (23), we have a system of NF ordinary 
differential equations in the (NF - NT) components of γ and the NT components of p. However, 
it is also possible to eliminate the pressures from this equation since CTAT = (AC)T = 0. Multiply 
(23) by CTD2, after substituting (26) into (23), to obtain: 

This is a system of NF - NT ordinary differential equations for γ. 
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Ignoring the faces of tetrahedra in common to ∂Ω where pressures may be specified, it is 
known7 that NT (the number of tetrahedra) is approximately ½NF (the number of internal faces). 
Hence the primitive system is of dimension NF + NT 3NT and the dual variable system is of 
dimension NF - NT NT, for a reduction factor of 3. 

RELATIONSHIP TO THE MAC METHOD 

The MAC scheme15 is a much used finite difference technique for approximating the 
incompressible Navier-Stokes equations. Although it can only be used with hexahedral meshes, 
it does offer great simplicity and the programming convenience of a rectangular geometry. In 
order to provide some credibility for the covolume method described herein, we show how for 
an appropriately chosen tetrahedral mesh the MAC scheme can be reproduced by this method 
for the simple steady-state Stokes equations. 

We briefly review the MAC approach for the case of a uniform hexahedral mesh of gauge h. 
The variables used (velocity components normal to and passing through the centre of cell faces, 
pressures at cell circumcentres) are illustrated in Figure 12. 

The MAC approximation to the continuity equation is given by: 

The x-momentum equation for the Stokes model at P is (for unit viscosity): 

The only modification to these equations occurs at flow boundaries. 
A tetrahedral complementary volume scheme which produces equations equivalent to (28), 
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(29) can be obtained as follows. Consider the decomposition of the curve in Figure 12 into 5 
abutting tetrahedra as illustrated in Figure 13. The tetrahedra labelled I, II, III, and IV are 
identical right tetrahedra each bounded by three faces that are isosceles right triangles and one 
face that is an equilateral triangle. The 5th tetrahedra, labelled V in Figure 13, has a boundary 
composed of four identical equilateral triangles each of area A = All five tetrahedra 
share the same circumcentre, namely the circumcentre of the cube in Figure 12. The circumcentres 
of any right triangular face of a tetrahedron falls at the centre of the associated hypotenuse; the 
circumcentres of equilateral triangular faces lie at associated triangle centroids. Note that, in 
general, there is one normal velocity component for each triangular face in the tetrahedral mesh. 
However, right triangles that abutt along a common hypotenuse (like CAB and CBD in Figure 
13) share identical circumcentres (the point P), therefore identical normals. Hence the linear 
steady state form of (9) is implemented twice at P (once for face CAB and once for face CBD) 
and the resulting difference equations are added to produce a single difference equation associated 
with the point P. 

In the covolume scheme described in an earlier section, the pressure variables are defined at 
the five tetrahedral circumcentres which coincide with the centroid of the cube in Figure 12. We 
treat these five pressure variables as being the same and at a location that coincides with the 
MAC placement of pressure. Consider tetrahedron V and let n1, n2, n3, and n4 be inward 
pointing normals passing through the circumcentres of faces CFH, CBH, CBF, and BFH 
respectively in Figure 13. The remaining normals involved are assumed to be in the positive 
coordinate direction (see Figure 13). To obtain (28), we integrate the continuity equation over 
each of the five tetrahedra in Figure 13 as outlined earlier (see (10)). The resulting five flux 
equations are, then: 
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Adding these gives: 

which is equivalent to (28), the discrete continuity equation for the MAC scheme. 
Now, let n denote the outward pointing normal to face ABCD that passes through the 

circumcentre bisecting the edge BC (see Figure 14). 
The Voronoi polytope associated with node A (itself a cube of dimension h) has a boundary 

consisting of the hyperplanes that bisect the six edges in the mesh that contain node A. Two of 
those planes P1, P2 are shown in Figure 15 together with flow and pressure labels attached to 
the edges of the polyhedron. In Figure 16 we show two hyperplanes, P3, P4 on the surface of 
the Voronoi polytope containing node D. Figures 15 and 16 indicate that the hyperplane in the 
Voronoi diagram that bisects the edge BC is the line defined by the intersections of P1, P2, P3, 
P4; that is, the line connecting circumcentres Pi - 1,j,k and pi,j,k. This degeneracy would imply 
that area (FBC) = 0 in (17), hence (17) cannot be used to define a difference equation in this 
case. Rather, we do not discretize (curl q)(B+C)/2. TBC in (16) via (17)-(20), but rely on the 
cancellation of this term from the difference system by adding the difference equations that arise 
when n1 in (14) is chosen on face CAB and when n1 is chosen on face CBD in Figure 13. Applying 
(14)-(16) to this regular mesh gives: 

Therefore, the steady-state form of (9) without the convection term (that is, the scalar Stokes 
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model) can be approximated using (31)-(33) as: 

With reference to Figure 16, a similar implementation of (14)-(16) arising from tetrahedron 
CBDH in Figure 13 produces: 

From the continuity equation: 

Adding the two scalar momentum equations (34) and (35), and multiplying by ½ gives: 

where Q is given by: 

Subtracting (37) from (36) shows that: 

and (38) is the same as (29), the x-momentum equation for the MAC scheme. 
These calculations show the equivalence of the two methods in the uniform hexahedral mesh 

case and demonstrate that the covolume scheme presented here provides a generalization of the 
MAC scheme to general three-dimensional tessellations composed of tetrahedra. 

CONCLUSIONS 

Earlier5,6,13-15 we presented an approach that integrates three computatioual components into 
a single algorithm for modelling the two-dimensional incompressible Navier-Stokes equations: 
(1) automatic Delaunay mesh generation, (2) covolume finite difference equation generation, 
and (3) dual variable reduction of primitive systems. This covolume approach replaces the 
continuum problem involving a vector velocity field with a discrete problem involving only a 
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single scalar velocity which is normal to triangle sides. Also presented15 was an interpolation 
scheme for deriving a posteriori approximations of flows tangent to triangle sides in order to 
produce a discrete vector-valued approximation of velocity. This two-dimensional implementa­
tion has been quite successful. 

In this paper we have extended this approach to the modelling of the three-dimensional 
incompressible Navier-Stokes equations. The primitive discrete model results from the 
approximation of velocity components tangent to boundary edges on Voronoi polyhedral 
covolumes (normal to tetrahedral faces) and the pressure field approximated at the corners of 
the polyhedral surface (the circumcentres of Delaunay tetrahedra). We have given details on the 
implementation of this model for ideal tessellations as well as for the more realistic tessellations 
that arise when using current solid mesh generation software. While we have not completely 
answered all questions for tessellations of the latter type, we do not forsee any insurmountable 
problems with the three-dimensional implementation. We have also shown how the MAC scheme 
can be derived as a special case of the covolume scheme presented here. 

As in two dimensions, the DAEs generated by the covolume method in three dimensions are 
well suited for variable reduction by the dual variable method. The primitive DAE system can 
be replaced by an equivalent system of ODEs whose dimension is a factor of three smaller than 
that of the primitive system. 
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